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A method is proposed for measuring time-varying thermal fluxes. 

Methods are known for measuring nonstationary thermal fluxes that are based on analyz- 
ing the time dependence of the temperature in two and more sections of a plate or semi- 
bounded body [1-5]. One of the sections should be as close as possible to the sensor work- 
ing surface, which will raise its sensitivity but makes difficult experimental realization. 
Heat propagation in a body is ordinarily assumed one-dimensional. In other cases the vari- 
able heat flux is determined by the mean bulk temperature of the body [5, 6] or by the tem- 
perature of the working surface [7]. Sometimes the method of a "dynamic thermocouple" is 
used to investigate heat transfer in a plasma jet, which permits heat flux measurement up 
to the thermocouple junction [6], which is the average quantity that can be utilized with a 
certain error to compute heating of the particles similar to the thermocouple junction in 
their properties [8]. 

Real sensors can correspond to the schemes considered only with definite errors. 

It is most convenient to locate the thermocouple on the plate surface opposite to the 
working surface. A method, verified in model problems and in test, is examined below for 
such a sensor scheme. 

Taking account of the temperature dependence of the material properties, the problem 
of plate heating by an arbitrarily varying thermal flux from the surface x = R while the 
surface x = 0 is heat insulated can be written as follows 

c (t) 9 O'c Ox 

c = co 3- clt, ~ = ~'o + )~d, 
qlx=R = q (=), 

qlx=0 = 0, 

tlx=o = f (t), 

fl==o = to. 

We will seek the solution of the problem in the form 

t (x, ~) = M 3- Qx 3- Nx 2 3- Gx 3 3- Sx% 

w h e r e  M, Q, N a r e  f u n c t i o n s  o f  t h e  t i m e  a n d  G a n d  S a r e  c o n s t a n t s .  

Integrating (i) between 0 and R and utilizing (2), (3), and (7), we obtain 

q(R, ~ ) = p  M' CoR3-c lMR3-qN 
3 
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Solving (i)-(6) by using (7), we find values of the coefficients in (7) and (8) 

M = f (t), 

Q = o ,  
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Fig. i. Time dependence of the temperature (x = 0) 
(i) and the heat flux (x = R) (2-7) (R = 5 mm): 2) 
A~ = 0.04 sec, 3) 0.02, 4) 0.01, 6, 7) 0.002 sec, 6) 
time step for finding the derivative dt/dT 0.002 sec, 
7) 0.02; 5) exponential method, q, kW/cm 2, t, ~ 
%, sec. 

Yi . 2. Dependence of the mean heat flux deviation 
~q on the time step At/T, (T, is the time of the 
nonstationary section of the curve q = f(m)): i) 
R = 5 mm, 2) 2. 

N = (Co + qm)  riM'~2 (~o + ~M), ( 11 ) 

G ---- (4to - -  4M - -  2NR~)/R 3, ( 12 ) 

S = (3M + NR z -  3to)/R ~, ( 1 3 )  

N'  ----- [(2N ~- 66t2, -}- 12SR z) (~,o -+- ~.~M + ~,~NR z + ~,~GR 3 %- ;~SR ~) -F 

-}- (2NR -F 3OR = + 4SR") (2~NR -+- 3kxOR z -F 4~SR3)I • 

M' 
~', {gR z [Co + C~ (M -F NR 2 + 6R 3 -F SRg]} -~ - -  RZ ( 1 4 )  

By knowing the time-dependence of the temperature in the section x = 0, the heat flux on the 
plate surface x = R can he computed by means of (8)-(14). The derivative of the temperature 
with respect to the time can be found from the formulas: 

for the first point 

for succeeding points 

Mo 1 = ~ ( - -  3to -6 4ta - -  t~), ( 1 5 )  

M~ = (th+~ - -  ~_0/2A~. ( 16 ) 

For constant properties and q = const, the derivative dt/dz is independent of x for Fo > 5 
and equals a const [9]. From (ii) we have N' = 0 and the heat flux formula (8) reduces to 
an expression for the exponential method of determining the constant heat flux [i0] 

q = 9cRM'. ( 17 ) 

The thermophysical properties of the sensor material can be taken constant for small changes 
in the temperature of the ordinarily utilized copper calorimeter. In this case c z and ~l 
equal zero in (8), (11)-(14). 

Confirmation of the proposed method in an example of constant heat flux and material 
properties showed that the deviation of the computed heat flux from the initial did not 
exceed 0.14% for q = 3 kW/cm 2 and AT = 0.04 sec. The temperature for x = 0 was found from 
formula (14) in the paper [9]. 
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The method was used in combination with the exponential method to process the results 
of heat flux measurement for the sensor inserted in a plasma jet. The sensor was a 3 mm 
diameter cylinder 5 mm long, heat insulated by a textolite sleeve on the lateral surface 
side. In conformity with the exponential method a KhK thermocouple was calked into the 
endface of the calorimetric element and the readings are presented in Fig. i. 

The exponential method yields the value qc = 2.3 kW/cm 2 on the linear section of the 
temperature curve. The new method permits measuring the heat flux during the whole sensor 
heating process (Fig. i). The heat flux values in the quasistationary heating phase 
obtained by the two methods are in agreement (discrepancy less than 0.~%). As it turned 
out, the heat flux about 0.i sec after sensor insertion varied approximately four times. 

The time step utilized can influence the restorable heat flux if incorrectly chosen. 
As the step diminishes and the number of points grows on the nonstationary section of the 
curve the heat flux fluctuations increase (Fig. i). The time step can be selected as a 
compromise between the number of steps necessary on the nonstationary section and the error 
of the result (Fig. 2). For an optimal step the error is about 1% in this case. 

Computations showed that the optimal step can be shifted substantially towards small 
values by using a simple method (when the error is still on the sloping section of the 
curve in Fig. 2). To do this the heat flux values are calculated in terms of the necessary 
minimal step while the derivatives (15) and (16) are computed using a coarser step within 
the limits of the smooth section of the temperature curve. The spread in the data is here 
diminished significantly for other conditions being equal (see Fig. i). 

To confirm the accuracy of restoration of the nonstationary heat flux by the proposed 
method, the problem (1)-(6) was solved in which condition (3) was replaced by a given func- 
tion 

q = 5 ~ ,  0 < x < 0 , 0 5 ;  
(18) 

q = 0 , 5 - - 5 ~ ,  0 , 0 5 < ~ 0 , 1 ,  

that corresponds to heat flux fluctuations encountered in practice. Equation (i) is 
replaced by the difference equation 

v ( = ' 1 +  ct 0~,~ A F o [ +  AFo 0 i + l k +  
1 + q Oi,k 

Co CO 

+ 0~_1,~ ) q ~1/~,o AFo (Oi+l,k__Oi_l,h)2 ' 

1 + cl 0~h 4 (19)  
C0 

where  0 = t to; A Fo = aoA,/Ax ~. 

The boundary conditions were all converted correspondingly. In particular, the tem- 
perature on the surface x = R was determined by the dependence 

0~1 h 02,hq_ (qo-I- q'kA~) Ax (20)  
' ~0q-~10~h ' 

where  t h e  c o e f f i c i e n t s  q0 and q '  a r e  found  f rom c o n d i t i o n s  ( 1 8 ) .  The t e m p e r a t u r e  f i e l d  
o b t a i n e d  by a n u m e r i c a l  s o l u t i o n  o f  t h e  d i r e c t  p r o b l e m  by u s i n g  an e x p l i c i t  scheme was 
u t i l i z e d  t o  r e s t o r e  t h e  h e a t  f l u x  ( F i g .  3 ) .  T a k i n g  a c c o u n t  o f  t h e  b r e a k  in  t h e  c u r v e  a t  t h e  
u p p e r  p o i n t  t h e  a c c u r a c y  o f  r e s t o r i n g  t h e  h e a t  f l u x  can  be c o n s i d e r e d  s a t i s f a c t o r y .  

The r e s u l t s  o f  r e s t o r i n g  t h e  h e a t  f l u x  were  compared  w i t h  d a t a  o b t a i n e d  by u s i n g  two 
o t h e r  m e t h o d s .  The s m a l l  c a l o r i m e t e r  method  

dt 
q(z) = 8(c0 + c l 0 ) p - -  (21)  

& 

was t h e  f i r s t  u s e d ,  which  g o e s  e v e r  i n t o  t h e  e x p o n e n t i a l  method  (17)  f o r  c o n s t a n t  h e a t  f l u x .  
The s e c o n d  was t h e  method  o f  S. L o p a t a  and Ya. T a l e r  [ 3 ] .  Both  y i e l d e d  s a t i s f a c t o r y  bu t  
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Fig. 3. Time dependence of the 
temperature and heat flux: i) 
temperature in the section x = 0; 
2) initial heat flux; 3-5) 
restored heat flux: 3) by the pro- 
posed method; 4) by the small 
calorimeter method; 5) by the 
method of S. Lopata and Ya. Taler 
[3]. 

somewhat worse results as compared with that assumed (Fig. 3). The temperature on both 
plate surfaces must be known for the method in [3]. 

Real values of the temperature utilized to restore the heat fluxes were measured with 
large and small error, consequently, estimation of the accuracy in determining the heat 
flux as a function of the temperature error is important. To do this, two and three places 
were retained in the temperature values computed with numerical model problem examined 
above. 

The heat fluxes restored according to the temperatures known with 2 and 3 place accur- 
acy differed slightly from the heat fluxes computed according to the temperature field cal- 
culated in the direct problem with 5 place accuracy. The error in q due to the reason men- 
tioned did not exceed 1-2% in the domain of the peak. 
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